### **HES trade-off studies**

Jun Li

### (CIMSS/UW-Madison)

Timothy J. Schmit, W. Paul Menzel, Jim Gurka

### (NOAA/NESDIS)

#### Jinlong Li, Chian-Yi Liu, Mat Gunshor, Dave Tobin, Youri Plokhenko etc.

#### (CIMSS/UW-Madison)

Hyperspectral IR Workshop

University of Wisconsin-Madison

26 – 28 April 2006





UW-Madison



### HES trade-off studies for

- **Temporal resolution** how often does feature of interest need to be observed;
- **Spatial resolution** what picture element size is required to identify feature of interest and to capture its spatial variability ?
- Radiometric resolution what signal to noise is required and how accurate does an observation need to be ?
- Spectral coverage and resolution what part of EM spectrum at each spatial element should be measured, and with what spectral resolution, to analyze an atmospheric or surface parameter ?
- **Ensquared Energy** what ensquared energy is required so that the far field radiances will not impact the sounding accuracy ?
- **Band-to-band mis-registration** what is the impact of band-to-band mis-registration on sounding accuracy ?
- **GOES-R position** what is the impact of two-satellite system on science ?

# Temporal resolution

- For mesoscale application, 5 minutes is ideal for regional NWP applications
- For disk sounding, 1 hour or better is required

#### MODIS band 31 (11 µm) 30-minute morphing over the high latitude region.



#### MODIS band 31 (11 µm) 5-minute morphing over the high latitude region.



GOES12 Band 3 (2004 Day 243 1335UTC)



### GOES-12 6.5 µm BT



GOES-12 6.5 µm BT difference (change) 1 minute later



GOES-12 6.5 µm BT difference (change) 2 minute later



GOES-12 6.5 µm BT difference (change) 5 minute later



GOES-12 6.5 µm BT difference (change) 10 minute later

## Spatial resolution

- 4 km or better for regional applications
- High spatial resolution allows more "clear holes" for sounding
- High spatial resolution depicts better water vapor gradients than temperature gradients



TPW 02km/ABI on GOES-R

1 1 Carl

TPW 04km/HES-SW/M

TPW 10km/HES on GOES-R





### MODIS Cloud Mask - 26 July 2002, 18:40 UTC

Green - Confident Clear Light Blue -Probably Clear Red - Uncertain White - Cloud

NAST-I Data Swath

Aqua Overpass Location (18:39:10 UT)















![](_page_25_Figure_0.jpeg)

### Signal-to-noise ratio

- Impact on sounding is significant, SNR is key element for sounding
- With given spatial resolution, spectral coverage, spectral resolution and signal-to-noise ratio need to be balanced

![](_page_27_Figure_0.jpeg)

![](_page_28_Figure_0.jpeg)

![](_page_29_Figure_0.jpeg)

## Spectral resolution

- Has impact on temperature and moisture soundings, especially when there are vertical structures such as level inversions
- Has impact on surface emissivity retrieval using window band

![](_page_31_Figure_0.jpeg)

![](_page_32_Figure_0.jpeg)

Ability to detect inversions disappears with broadband observations (> 3 cm-1)

### **Twisted Ribbon formed by CO<sub>2</sub> spectrum:** Tropopause inversion causes On-line & off-line patterns to cross

![](_page_33_Figure_1.jpeg)

Atmospheric transmittance in H2O sensitive region of spectrum

![](_page_34_Figure_1.jpeg)

### Spectral change of 0.5 cm-1 causes BT changes > 10 C

### Studying spectral sensitivity with AIRS Data

### AIRS BT[1386.11] – BT[1386.66]

![](_page_34_Figure_5.jpeg)

### Validation of AIRS profile retrievals at CART site

![](_page_35_Figure_1.jpeg)

![](_page_36_Figure_0.jpeg)

![](_page_37_Figure_0.jpeg)

Water vapor mixing ratio vertical resolution: LW + SMW with PORD noise is assumed

### LW channels

![](_page_38_Figure_1.jpeg)

### Shorter side MW channels

![](_page_39_Figure_1.jpeg)

## Spectral coverage

- Highly related to cost/budget and requirement in some designs
- Need to optimize the spectral coverage for a cost effective instrument
- Products and applications dependent
- Should consider other available data source for synergistic applications (LEO, GPS)
- Some trade-off studies for HES

# **IR Spectral Considerations for HES**

![](_page_41_Figure_1.jpeg)

1 = 675 - 800 cm - 1 (14.8 - 12.5 um), 2 = 800 - 1000 cm - 1 (12.5 - 10.0 um), 3 = 1210 - 1645 or 1689 - 2150 cm - 1 (8.26 - 6.08 um or 5.92 - 4.65 um), 4 = 1080 - 1000 cm - 1 (10.0 - 9.26 um), 5 = 1080 - 1200 cm (9.26 - 8.33 um), 6 = 2150 - 2400 (4.65 - 4.167) but considering 2150 - 2250 and 2350 - 2400 cm - 1 (4.65 - 4.44 and 4.255 - 4.167 um)

![](_page_42_Figure_0.jpeg)

![](_page_43_Figure_0.jpeg)

![](_page_44_Figure_0.jpeg)

(1) Both sides have the similar spectral information; (2) Longer side H2O region provides better midtropospheric moisture, shorter side H2O region provides better boundary layer moisture; (3) Combination of both sides provides the best moisture information.

LWCO2: 12.5 um to 13.92 um (800 cm-1 to 718 cm-1) or SWCO2: 4.167um to 4.65um (2400cm-1 to 2150cm-1) at goal NEdN

**SWH2O**: 4.65um to 6.0um (2150cm-1 to 1666cm-1) or **LWH2O**: 6.0um to 8.26um (1666cm-1 to 1210cm-1)

LWWindow: 10.1um to 12.5um (990cm-1 to 800cm-1) or SWWindow: 8.33um to 9.3um (1200cm-1 to 1075cm-1)

# HES Detector Optical Ensquared Energy (DOEE) study

- MAS IR data with 50 meter resolution is used
- Point Spread Function (PSF) from GIFTS
- MODIS 1 km IR data are used to study the impact of PSF on retrieval

![](_page_46_Figure_0.jpeg)

### MAS data: Clear/Cloudy

#### MAS Data Flight Date: MASL1B\_03915\_09\_20021123\_1918\_1937\_V01.hdf

![](_page_47_Figure_2.jpeg)

#### **R (20:2.15)**G(10:1.64)**B**(2:0.55)

#### MAS Data Flight Date: MASL1B\_03613\_12\_20030220\_0019\_0036\_V01.hdf

![](_page_47_Figure_5.jpeg)

#### **R (3:0.66)**G(2:0.55)B(1:0.47)

![](_page_47_Picture_7.jpeg)

#### **R** (20:2.15)G(10:1.64)B(2:0.55)

### 4 km and 10 km BT average (Clear, 12.00 μm)

![](_page_48_Figure_1.jpeg)

BT image: MAS VS 4 km average VS 10 km average

### 4 km and 10 km BT average (Cloudy, 12.00 μm)

![](_page_49_Figure_1.jpeg)

BT image: MAS VS 4 km average VS 10 km average

### **BTD by EE (10 km, 12.00 μm)**

BTD alone center line (nadir)

![](_page_50_Figure_2.jpeg)

### **BTD by EE (4 km, 12.00 μm)**

![](_page_51_Figure_1.jpeg)

![](_page_52_Figure_0.jpeg)

![](_page_53_Figure_0.jpeg)

### Band-to-band mis-registration

- What is the BT error due to band-to-band mis-registration ?
- What is the impact on sounding accuracy ?

![](_page_55_Figure_0.jpeg)

![](_page_56_Figure_0.jpeg)

(UW/CIMSS)

# GOES-R satellite positions and their impact on science

- Impact on ABI/HES synergy (the ABI brightness temperature difference between one satellite system and two-satellite system)
- Clear skies with ECMWF data in calculation
- Surface emissivity effects are not considered

### Distributed Architecture Concept Notional Baseline

![](_page_58_Figure_1.jpeg)

- Advanced Baseline Imager (ABI)
- Hyperspectral Environmental Suite (HES)
- Solar Imaging Suite (SIS)
- Space Environmental In-Site Suite
- Geostationary Lightning Mapper (GLM)

![](_page_59_Figure_0.jpeg)

Distance=0.5

BTD (K)

Distance=30

# Parallax between 75 and 105 degrees (infrared window)

![](_page_60_Picture_1.jpeg)

# Summary

- Need to balance spectral resolution and coverage, spatial resolution, signal-to-noise, etc. for a cost effective Geo advanced IR sounder that meets the science requirements.
- Impact of point spread functions, band-to-band misregistration on science need to be considered
- Impact of satellite position and scan strategy on science need to be considered
- Simulation need to be realistic for Geo IR sounder trade-off study, ideal real data (e.g., NASTI and IASI) should also be used.